Analytic Solutions for Viscous Plumes and Thermals

John Lister & Robert Whittaker
ITG, DAMTRP, University of Cambridge

Introduction

Plume ‘heads’ and ‘tails’ are an important ingre-
dient of mantle convection, giving rise to flood-basalt
provinces and hot-spot volcanism.

We consider Boussinesq convection in Stokes flow
vV = Vp — ga(T — Tp)e. V-u=0
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with constant v, k, g, . The buoyancy b = ga(T'—Tp).
New asymptotic solutions have been obtained for

(1) a steady plume rising from a constant-temperature
heat source

(2) unsteady rise of a hot pulse, or ‘thermal’, with
constant total buoyancy.

(1) A STEADY PLUME

Q:  What is the plume and boundary-layer structure
above a hot source of radius R?

Q: How does the Nusselt number depend on Rayleigh
number Ra = gaATR? /vk for Ra > 17
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e Solution involves matching: (I) an inflowing bound-
ary layer above the source; (II) a short turn-round
region; (III) a slender rising plume; (IV) the induced
external flow.

e Boundary conditions:

Atoco: b—0, u—0
b
Onz=0: b=gaAT (s <R), $:O(S>R),
either u = 0 (rigid) or u, =0, (i;; =0 (free-slip)

Region I: Boundary layer above source
e The plume induces an inward flow (Region IV) over
the source
e The boundary condition (rigid/free-slip) has a big
influence on the strength and importance of this flow
near the boundary:
For a free-slip b.c. the plume-induced flow in region
IV dominates the locally driven flow
For arigid b.c. the flow driven by the local buoyancy
dominates the plume-induced flow
e Solution gives the total buoyancy and mass fluxes
in the thermal boundary layer.
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Figure: Numerical solution for the thermal boundary layer

above a rigid boundary. This matches to the turn-round region

as s — 0 and to the external flow as Ra'/%z — oo

Region II: Turn-round

e The fluid spends too little time in this region for
diffusion to act significantly. The heat and mass fluxes
are transmitted unaltered from the boundary layer to
the base of the plume.

Region I'V: External flow

e The external flow sees a line force F(z) = [bdA
spread over a thickness a(z) < z. From slender-body
theory the velocity within the plume is nearly uniform
and given by
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Region III: Slender plume
e The plume is narrow with typical radius a(z) < z.
Vertical diffusion is negligible since 9b/0z < 9b/ds

e Using a stream function 1), one can show that the
vertical buoyancy flux

B= /wbdA = /bdw is constant

and the buoyancy-weighted vertical mass flux

Qz)=2 bd)du‘)/ bdiy = Q(0) + 4Kz
[re/]

where B(0) and Q(0) are found from regions I and II.

The buoyancy force and plume thickness are then
given by

Q
=
©

)

Final scalings
e Putting the calculations all together (for Ra > 1)

B =
Nu= aATRE ™ 2.90Ra'/® (rigid)
647 Ra /3 2Inln Ra X
Nu~ <3ln Ra> <1 — m) (free-slip)
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e In the plume wg(z) (Ra Nuln f) varies little
a
with z

e a(z) is approximately constant for z/R < Nu and
o z/2 for z/R > Nu

(2) AN UNSTEADY THERMAL
Q: How does a finite heat pulse with total buoyancy
force F = ga [(T — Tp) dV rise and diffuse in Stokes
flow?

Q: How does the solution structure depend on the
Rayleigh number Ra = F/vk for Ra > 17

e The equations support a similarity solution with
lengths ~ t1/2: by diffusion the size of the pulse scales

like (kt)'/? and the buoyancy scales like (xt)~3/2; thus
the Stokes rise velocity is proportional to ¢~/2 and,
remarkably, the rise distance is thus also like ¢1/2.

e Define similarity variables

X K\ 1/2
= Gy e t) = (5) U©

F v
ga[T(x,t) — To] = W@<£) p(x,t) = Itp(ﬁ)
to obtain the similarity equations

V?U = VP — Ra®e, V-U=0

—60 + (U —2¢) - VO = V20, /@dV:I
which are solved numerically.
Numerical solutions

For Ra = O(1) diffusion is dominant, the thermal has
close to a Gaussian distribution, and rises slightly from
the origin.
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Figure: Numerical solution for the self-similar rise of an ax-
isymmetric thermal pulse. Temperature contours are in red.
The material pathlines (in black) are given by U — 2£ in the
similarity variables.

The solutions for Ra > 1 (above) show:

e A recirculating head and a long tail

e But most of heat is in the tail not the head

o The rate of rise ~ (Raln Ra)'/? is driven by the tail
and is not ~ Ra®/* as proposed by Griffiths (1986)

Slender-body approximation

An asymptotic solution based on slender-body the-
ory for the tail agrees with the numerical scalings with
Ra and with the form of U and ©.

12¢e=3°/2
Raln Ra
for 0 < ¢ < (RalnRa/37)Y?

U~ (=p20), O~
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