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1 Introduction and Overview

Aims, Motivation and Methodology

e Examine an instability of flow through a tube with an elastadlw

e Motivated by observed self-excited oscillations in Staylresistor
experiments (see below), and flow in larger blood vessels.

e A recent review of work on collapsible tube and channel flasvs
provided by Heil & Jensen (2003)

e Jensen & Hell (2003) studied an instability in 2D channel flow
a high-tension rapid-oscillation regime. We show the samstat
bility mechanism (outlined below) is present in 3D tubes.

e \We use a combination of numerical and asymptotic methodq to

examine the stability criteria and gain insight into the entyging
physical mechanisms. We provide theoretical predictiongHe
stability boundary, growth rates and mode shapes.

e \We consider separately the fluid flow (prescribed wall ozcill
tions) and the mechanics of the wall (prescribed transnpres-
sures) before coupling the two to address the full problem.

Starling Resistor Setup

A flexible tube section of lengtli, iIs pinned at both ends to rigid
sections of lengths.,;, and L ,,. The total tube length I8 = Ly, +
L¢ 4+ Ly, typical width2a, and wall thickness. The tube wall has
bending stiffnessy and is stretched axially by a fordé. There is
an external pressuiBys.
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The tube is filled with a fluid of density and dynamic viscosity..
A steady axial flow of typical scal& is induced by applying either
a steady pressure differencg, — py,, between the ends, or a stead

Iy

flux () at the downstream end. The elastic section of wall undergpes

oscillations with amplitude, and frequency = 27 /T.

2 Instability Mechanism

Mechanism found by Jensen & Heil (2003) for 2D channel flow. W}e

have shown it to operate in 3D tubes too.

Consider energy budget with pressure boundary conditions:

Energy to feed instability= KE Inflow — KE Outflow — Dissipation
— Work done at tube ends

e \WWall oscillations lead to changes in cross-sectional area.

e This drives an oscillatory axial ‘sloshing’ flow. Inertimhpedance
In the rigid sections is proportional to the length, so a tmeam-
plitude occurs in the shorter section.

e The time-averaged KE flux at the tube ends is dominated by
background mean flow, which cancels between the two ends
there is a contribution at each end proportional to the sgofihe
amplitude of the sloshing flow there.

e Hence a shorter upstream sectidn,( < Lg,) results in a net
Input of kinetic energy to the fluid inside the system

e Energy can be lost through dissipation and by work done again

the pressure at the tube ends.

e Find that work done ig /3 of additional KE input, s@/3 of this
energy input is left over.

e If the dissipation is low enough and there is a large enoufjére
ence in the lengths of the rigid sections, then there will ivergy
available to feed the instability.
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3 Asymptotic Regime

e \Womersley number.

2
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Oscillatory flow has an Allows long-wavelength
Inviscid core with viscous approximations to be used.

Stokes layers of thickness
O(a~ 1) near the walls.

e Tube aspect ratia

e Tube wall thickness
S
0=—-—<1
e Strouhal number: a <
g —_ 4 s Allows wall mechanics to be

o wr modelled using shell theory.
Nonlinear inertia absent at

leading order e Dimensionless axial tension

al’
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Axial curvature effects
comparable with azimuthal
bending effects.

e Oscillation amplitude:

d
A = o< a <1
Allows linearisation of
boundary conditions.

4  Fluid Mechanics
(Prescribed Oscillations)

We derive an asymptotic solution to the Navier—Stokes
equations for flow through a flexible tube, subject to pre-
scribed high-frequency long-wavelength small-amplitude
oscillations of the tube wall.

e Assume a Newtonian fluid, and use the dimensionless Navi
Stokes equations, with velocity = u’ + (wz;
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e Assume flow remains laminar, and boundary layers remain

tached. Steady component of flow is Poiseuille flow. Osaifiat
component is plug flow with boundary-layer structure nedt.wa
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e For asymptotic analysis, decompose variables in multipfeke
fundamental oscillation frequency, and expand as power serie
in e = max{a !, (¢(St)~1, 72} andd = A/e:

u:ﬁ0+52’&2+...
+ Ao (’fboo + eug1 + 621102 + .. .)GMt

+ \ed? (f&oo ¥ .. .)eQW t..

¢ At leading order, oscillatory pressure and axial velocity ani-
form in each cross-section. Continuity and axial momentum:

d )
—(AO woo) +iwA =0,

dpoo
dz '

W wy) = ————

e (1)

where the cross-sectional arealis:, t) = Ag(z) + A(z)e!,

Have Poisson problem for flow and pressure in each crosssect

e Solve for leading order flow and first order corrections. Catap

energy budget, and find the mean (dimensionless) rate ofimgpri

E by the fluid on the tube wall.

e Associater > 0 with instabllity, since more energy is being ext

tracted from the mean flow than is dissipated by the os@lheti
Critical inverse Strouhal numbeét_ ! whenE = 0.

e Expression for energy in an axially uniform tube with a préssd
flux at the downstream end:

1

E=2 Sl [
m [V(0)] ( St),
A S RXe

Ste aA2|V(0)]2

(2)

whereV(z)e“! is the volume change betweenand the down-

stream end, and|) is the circumference in the undeformed stat¢.

We find excellent agreement with numerical simulations gisi
oonph- | i b (Heil & Hazel, 2007):
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¢ Also have results for axially non-uniform tubes and the calsere
the axial flow is driven by a pressure drop. Full details can
found in Whittakeret al. (2009,b).
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5 Solid Mechanics (Tube Law)

We derive an approximate relationship between the trans-
mural pressure P,,(z) and changes in cross-sectional area
A(z) for small-amplitude long-wavelength deformations of
an initially elliptical elastic-walled tube.

e Parameterise wall with Lagrangian coordinatesz), and triad
(n,t,b) aligned with surface. Describe deformation gy, ¢)
such that material initially at dimensionless positigypmoves to

A

. A A
r=1ry(7,2) + E(§<T, 2)n + (T, z)t) + ((1,2)b,

whereh(7) is the scale factor for the elliptical coordinates.
¢ \We use shell theory to model wall mechanicgidde, 1972).

e Long-wavelength{ > 1) and scaled tensiorf = O(1)) regime
means that the transmural pressiyg is balanced at leading or-
der by a combination of azimuthal bending and axial cunetyr
forces. Size of deformations given by~ «’P,,,,/ K. Wall effec-
tively inextensible in azimuthal direction.

e Eliminateé and( to obtain linear system fof(r, 2 ):

82
Z
e Deformations of the tube cross-section are Y

dominated by a single mode shape:

E(T,2) = b1(2) (3 — 4 cosh 20 cos 27 + cos4T) |
n(7,z) = 2b1(z) sinh 20( sin 27 .

e Truncate to this single mode, and note- A, o b;(z) to obtain:

d2

Pim = ko(A — Ag) — ke F —(A — A) (3)

In dimensionless variables, whergandks are numerically com-
puted constants related to the geometry of the undefornied tu

e Good agreement with numerical computatiomsrfph- | i b; Hell
& Hazel, 2007) for¢ = 100, 8 = 0.05, and a uniform transmural
pressure:
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¢ Further details in Whittakest al. (200%).

6 Fluid—=Structure Interaction

(Normal Modes)

Combine fluid and solid mechanics work to consider full
FSI problem. Oscillatory normal modes are computed,
together with their frequencies and growth rates.

e Combine (1) and (3), and assume osclillatory presgyrelomi-
nates transmural pressufe,,. Eliminatewy, and A to form sin-
gle equation for dimensionlegg(z) in the flexible section:

d*pog pog w? . 0
R A T

e In rigid sections4 = 0 = j(},(z) = 0.
Match by imposindpgo| = [p{,,] = 0 at joins.

e Boundary conditions at tube ends:
poo = 0 for pressure condition,, = 0 for flux condition.

ko T k

¢ Solve to obtain natural frequenciesand normal mode shapes:
1 ' T T T T T T T
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e Using the energy result (2), growth rate given by

m ( o (0) <zw>1/2>.

Q:
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¢ Fundamental mode has lowest frequency and highest grateh-r
e Comparison with numerical simulations ongoing.




