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6 Fluid–Structure Interaction
(Normal Modes)

Combine fluid and solid mechanics work to consider full
FSI problem. Oscillatory normal modes are computed,
together with their frequencies and growth rates.

• Combine (1) and (3), and assume oscillatory pressurep̃00 domi-
nates transmural pressurePtm. Eliminatew̃00 andÃ to form sin-
gle equation for dimensionless̃p00(z) in the flexible section:

k2F
d4p̃00

dz4
− k0

d2p̃00

dz2
−

ω2

A0
p̃00 = 0 .

• In rigid sectionsÃ = 0 ⇒ p̃′′00(z) = 0.
Match by imposing[p̃00] = [p̃′00] = 0 at joins.

• Boundary conditions at tube ends:
p̃00 = 0 for pressure condition,̃p′00 = 0 for flux condition.

• Solve to obtain natural frequenciesω and normal mode shapes:
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• Using the energy result (2), growth rate given by

Ω =
π

2A0

(

|p̃′00(0)|2

ℓSt
∫ 1
0 |p̃′00(z)|2 dz

−
(2ω)1/2

α

)

.

• Fundamental mode has lowest frequency and highest growth-rate.

• Comparison with numerical simulations ongoing.

5 Solid Mechanics (Tube Law)
We derive an approximate relationship between the trans-
mural pressure Ptm(z) and changes in cross-sectional area
A(z) for small-amplitude long-wavelength deformations of
an initially elliptical elastic-walled tube.
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• Parameterise wall with Lagrangian coordinates(τ, z), and triad
(n̂, t̂, b̂) aligned with surface. Describe deformation by(ξ, η, ζ)
such that material initially at dimensionless positionr0 moves to

r = r0(τ, z) +
∆

h

(

ξ(τ, z)n̂ + η(τ, z)t̂
)

+
∆

ℓ
ζ(τ, z) b̂ ,

whereh(τ ) is the scale factor for the elliptical coordinates.

• We use shell theory to model wall mechanics (Flügge, 1972).

• Long-wavelength (ℓ ≫ 1) and scaled tension (F = O(1)) regime
means that the transmural pressurePtm is balanced at leading or-
der by a combination of azimuthal bending and axial curvature
forces. Size of deformations given by∆ ∼ a3Ptm/K. Wall effec-
tively inextensible in azimuthal direction.

• Eliminateξ andζ to obtain linear system forη(τ, z):

Lτ (η) −
∂2

∂z2
Jτ (η) = Ptm

• Deformations of the tube cross-section are
dominated by a single mode shape:

ξ(τ, z) = b1(z) (3 − 4 cosh 2σ0 cos 2τ + cos 4τ ) ,

η(τ, z) = 2b1(z) sinh 2σ0 sin 2τ .

x

y

• Truncate to this single mode, and noteA−A0 ∝ b1(z) to obtain:

Ptm = k0(A − A0) − k2F
d2

dz2
(A − A0) (3)

in dimensionless variables, wherek0 andk2 are numerically com-
puted constants related to the geometry of the undeformed tube.

• Good agreement with numerical computations (oomph-lib; Heil
& Hazel, 2007) forℓ = 100, θ = 0.05, and a uniform transmural
pressure:
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• Further details in Whittakeret al. (2009c).

4 Fluid Mechanics
(Prescribed Oscillations)

We derive an asymptotic solution to the Navier–Stokes
equations for flow through a flexible tube, subject to pre-
scribed high-frequency long-wavelength small-amplitude
oscillations of the tube wall.

• Assume a Newtonian fluid, and use the dimensionless Navier–
Stokes equations, with velocityu = u

⊥ + ℓwẑ:

∇⊥· u
⊥ +

∂w

∂z
= 0 ,

∂u
⊥

∂t
+

1

ℓSt
(u ·∇) u

⊥ = −ℓ2
∇⊥p +

1

α2

(

∂2
u

∂z2
+

1

ℓ2
∇2
⊥u

)

,

∂w

∂t
+

1

ℓSt
(u · ∇) w = −

∂p

∂z
+

1

α2

(

∂2w

∂z2
+

1

ℓ2
∇2
⊥w

)

.

• Assume flow remains laminar, and boundary layers remain at-
tached. Steady component of flow is Poiseuille flow. Oscillatory
component is plug flow with boundary-layer structure near wall.
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• For asymptotic analysis, decompose variables in multiplesof the
fundamental oscillation frequencyω, and expand as power series
in ǫ = max{α−1, (ℓSt)−1, ℓ−2} andδ = ∆/ǫ:

u = u0 + δ2
u2 + . . .

+ λδ
(

ũ00 + ǫũ01 + ǫ2ũ02 + . . .
)

eiωt

+ λǫδ2
(

û00 + . . .
)

e2iωt + . . .

• At leading order, oscillatory pressure and axial velocity are uni-
form in each cross-section. Continuity and axial momentum:

d

dz

(

A0 w̃00

)

+ iωÃ = 0 , iω w̃00 = −
dp̃00

dz
. (1)

where the cross-sectional area isA(z, t) = A0(z) + Ã(z)eiωt.
Have Poisson problem for flow and pressure in each cross-section.

• Solve for leading order flow and first order corrections. Compute
energy budget, and find the mean (dimensionless) rate of working
E by the fluid on the tube wall.

• AssociateE > 0 with instability, since more energy is being ex-
tracted from the mean flow than is dissipated by the oscillations.
Critical inverse Strouhal numberSt

−1
c whenE = 0.

• Expression for energy in an axially uniform tube with a prescribed
flux at the downstream end:

E = 2π |V(0)|2
(

1

St
−

1

Stc

)

, (2)

1

Stc
=

ℓ

α

π3/2 C0

A2
0 |V(0)|2

∫ 1

0
|V(z)|2 dz .

whereV(z)eiωt is the volume change betweenz and the down-
stream end, andC0 is the circumference in the undeformed state.
We find excellent agreement with numerical simulations using
oomph-lib (Heil & Hazel, 2007):
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• Also have results for axially non-uniform tubes and the casewhere
the axial flow is driven by a pressure drop. Full details can be
found in Whittakeret al. (2009a,b).

3 Asymptotic Regime
• Womersley number:

α2 =
ρa2

µT
≫ 1

Oscillatory flow has an
inviscid core with viscous
Stokes layers of thickness
O(α−1) near the walls.

• Strouhal number:
St =

a

U T
≫ 1

Nonlinear inertia absent at
leading order.

• Oscillation amplitude:

∆ =
d

a
≪ α−1 ≪ 1

Allows linearisation of
boundary conditions.

• Tube aspect ratio:

ℓ =
L

a
≫ 1

Allows long-wavelength
approximations to be used.

• Tube wall thickness:

θ =
s

a
≪ 1

Allows wall mechanics to be
modelled using shell theory.

• Dimensionless axial tension:

F =
aF

2πKℓ2
= O(1)

Axial curvature effects
comparable with azimuthal
bending effects.

2 Instability Mechanism
Mechanism found by Jensen & Heil (2003) for 2D channel flow. We
have shown it to operate in 3D tubes too.

ũ

Lup Lf Ldn

ũ

u u

pdn2a pup

Consider energy budget with pressure boundary conditions:

Energy to feed instability= KE Inflow − KE Outflow− Dissipation
− Work done at tube ends

• Wall oscillations lead to changes in cross-sectional area.

• This drives an oscillatory axial ‘sloshing’ flow. Inertial impedance
in the rigid sections is proportional to the length, so a greater am-
plitude occurs in the shorter section.

• The time-averaged KE flux at the tube ends is dominated by the
background mean flow, which cancels between the two ends. Then
there is a contribution at each end proportional to the square of the
amplitude of the sloshing flow there.

• Hence a shorter upstream section (Lup < Ldn) results in a net
input of kinetic energy to the fluid inside the system

• Energy can be lost through dissipation and by work done against
the pressure at the tube ends.

• Find that work done is1/3 of additional KE input, so2/3 of this
energy input is left over.

• If the dissipation is low enough and there is a large enough differ-
ence in the lengths of the rigid sections, then there will be energy
available to feed the instability.

1 Introduction and Overview
Aims, Motivation and Methodology

• Examine an instability of flow through a tube with an elastic wall.

• Motivated by observed self-excited oscillations in Starling resistor
experiments (see below), and flow in larger blood vessels.

• A recent review of work on collapsible tube and channel flows is
provided by Heil & Jensen (2003)

• Jensen & Heil (2003) studied an instability in 2D channel flowin
a high-tension rapid-oscillation regime. We show the same insta-
bility mechanism (outlined below) is present in 3D tubes.

• We use a combination of numerical and asymptotic methods to
examine the stability criteria and gain insight into the underlying
physical mechanisms. We provide theoretical predictions for the
stability boundary, growth rates and mode shapes.

• We consider separately the fluid flow (prescribed wall oscilla-
tions) and the mechanics of the wall (prescribed transmuralpres-
sures) before coupling the two to address the full problem.

Starling Resistor Setup

A flexible tube section of lengthLf is pinned at both ends to rigid
sections of lengthsLup andLdn. The total tube length isL = Lup +
Lf + Ldn, typical width2a, and wall thicknesss. The tube wall has
bending stiffnessK and is stretched axially by a forceF . There is
an external pressurePext.

Lup
Lf

Ldn

flow direction

2a

pdn
or
Q

pup

pext oscillations

The tube is filled with a fluid of densityρ and dynamic viscosityµ.
A steady axial flow of typical scaleU is induced by applying either
a steady pressure differencepup − pdn between the ends, or a steady
flux Q at the downstream end. The elastic section of wall undergoes
oscillations with amplituded, and frequencyω = 2π/T .

High-frequency self-excited oscillations in
collapsible tube flows
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