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7 Numerics: Oomph-lib
An open-source object-oriented multi-physics finite-element library,

initially developed by Matthias Heil and Andrew Hazel. Further de-
tails and download at: http://www.oomph-lib.org/.

In collaboration with Matthias Heil and Jonathan Boyle at Manch-
ester, we aim to use numerical computations to further examine the
stability of tube flows, with the asymptotic results providing mutual
checks on accuracy.

6 Extensions to 3D
Circular Tube with n = 2 Oscillations

A = A0 +O(ε2) so only a weak axial sloshing
flow is driven. See Heil & Waters (2006) for
cross-sectional flow. Axial flow weaker than
in the 2D case, and so any possible energy
transfer to the wall only comes in at a higher
order in ε.

Circular Tube with Axisymmetric Oscillations

A = A0 + O(ε), but unphysical and little dif-
ference from 2D case. Calculations for forced
oscillations indicate that that the 2D mecha-
nism still works, and energy can be transfered
to the wall.

Elliptical Tube with n = 2 Oscillations
A = A0 + O(ε) but we have the additional ef-
fect of stagnation point flow in cross-sections.
Currently working through the details to see
if the cross-sectional flow affects the mecha-
nism. Analysis is complicated by the need to
use elliptical coordinates.

• Decompose wall deformations into a double Fourier series in the
azimuthal and axial variables.

• Assumed slenderness of the tube means cross-sections decouple
from one another to some extent.

• Solve Poisson problem for the inviscid cross-sectional flow in the
core, forced by the normal wall velocity.

• Mass continuity determines cross-sectionally uniform axial slosh-
ing flow and required axial pressure gradients.

• Solve a moving boundary-layer problem to match tangential ve-
locities between the core and walls.

• Repeat at next order, and look at the energy budget.

5 2D Model and Mechanism
Asymptotic analysis and numerical computations by Jensen & Heil

(2003). Apply pressure boundary conditions at two ends, and use
rigid sections of different lengths.
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Examine instability by considering energy budget:
Energy to Wall = KE Inflow − KE Outflow − Dissipation

A net transfer of energy to the wall allows the oscillation amplitude
to grow.
• Oscillation amplitude ε leads to O(ε) cross-sectional area change.
• This drives an oscillatory axial ‘sloshing’ flow. Inertial impedance

in the rigid sections is proportional to the length, so a greater am-
plitude occurs in the shorter section.

• The time-averaged KE flux at the tube ends is dominated by the
background mean flow, which cancels between the two ends. Then
there is a contribution at each end proportional to the square of the
amplitude of the sloshing flow there.

• Hence a shorter upstream section results in a net input of kinetic
energy to the fluid inside the system

• Energy can only be lost through dissipation in the Stokes layers
and/or transfer by net work on the wall.

• Keep dissipation low enough and have a large enough difference
in the rigid section lengths, and energy is transfered to the wall.

4 Solid Mechanics (Shell Theory)
• Model tube wall as a thin shell using shell theory (see Wempner

& Talaslidis, 2003) and assuming linear elastic behaviour. Can
derive equations for force balance on the shell mid-plane:

∇µ

[

γµν
Aν + ∇ν

(

τµν
N̂

)]

+ F + ∇µ

[

Gµ
N̂

]

= 0 .

Notation: γ stress, τ torsion, Aµ in-plane basis vectors, N̂ surface normal,
F external force per unit area, Gµ external moment per unit area.

• For thin shells, the bending stiffness is much less than the exten-
sional stiffness, which leads to interesting stability problems.

• Behaviour of an inextensible ring under uniform transmural pres-
sure: buckles in n = 2 azimuthal mode (Flaherty et al., 1972).
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• Behaviour often extrapolated in an ad hoc fashion to form a ‘tube
law’, a pressure–area relationship, with additional dependence on
axial variation. Simple example:

P = Pring(A) − k
∂2A

∂z2

• However, such simple tube laws don’t take account of the shape
of the partially collapsed tube, and this is vital for accurate repre-
sentations and modelling.

• Buckling of long tube — axial tension can effect which azimuthal
wavenumber n is the most unstable. Higher tension and/or a
shorter tube leads to larger n.

3 Fluid Mechanics
• Assume a Newtonian fluid, and use the Navier–Stokes equations:

ρ

(

∂u

∂t
+ (u ·∇) u

)

= −∇p + µ∇2
u ∇·u = 0

• Assume flow remains laminar. Then expect an inviscid core with
viscous Stokes layers near the walls. Assume these boundary lay-
ers remain attached (valid at least for small amplitudes).

• For asymptotic analysis, decompose variables in multiples of the
fundamental oscillation frequency ω, and expand in powers of the
dimensionless amplitude ε:

u = u00 + u01 eiωt + ε
(

u10 + u11 eiωt + u12 e2iωt
)

+ ε2
(

u20 + u21 eiωt + . . .
)

+ O(ε3)

2 Parameters and Scaling
Key Dimensionless Groups

• Oscillation amplitude: ε =
d

a
� 1 (small displacements)

• Womersley number: α2 =
ρa2

µT
� 1 (unsteady Reynolds number)

• Strouhal number: St =
a

U0T
� 1 (time scale ratio)

• Tube aspect ratio: ` =
L

a
� 1 (long tube)

• Tube wall thickness: δ =
h

a
� 1 (thin walls)

Scaling Regime

Work with ε as primary small parameter. Adopt the following scal-
ings for the other dimensionless groups:
•R2 = ε2 α2 = O(1) — viscous boundary layers have thickness

α−1 = O(ε), same order as oscillation amplitude.
• λ = ε `St = O(1) — axial oscillatory velocity is comparable with

the axial mean flow velocity.
• β−1 = ε `2 = O(1) — the tube is slender enough to take advan-

tage of a long wavelength expansion.

1 Introduction and Overview
Applications and Motivation

• Aim to examine the instabilities of axial flow through an elastic-
walled tube. Experiments in such systems develop spontaneous
oscillations of the elastic membrane in various regimes.

• Jensen & Heil (2003) studied the instabilities in a 2D channel in
a high-tension / fast oscillation regime. In particular, we wish to
see if the same instability mechanism is present in 3D tubes.

• Motivated by observed oscillations in Starling resistor experiments
(and partly, in turn, by blood flow in larger arteries and veins).

• Use a combination of numerical and asymptotic methods to ex-
amine the stability criteria and gain insight into the underlying
physical mechanisms.

• A recent review of work on collapsible tube and channel flows is
provided by Heil & Jenson (2003)

Model Setup and Boundary Conditions

A simple setup is used, motivated by a Starling resistor: A flexible
tube section of length L, pinned at both ends to two rigid sections
of lengths L1 and L2, and subject to an external pressure Pext. The
tube is filled with a fluid of density ρ and dynamic viscosity µ. A
length a characterises the cross-sectional width, and the flexible wall
has thickness h.

L1
L

L2

flow direction Pext

P1

2a

P2

A steady axial flow u of typical scale U0 is induced either by an
applied pressure gradient along the tube or by a fixed flux condi-
tion at one end. The elastic section of wall is supposed to undergo
oscillations with amplitude d = εa, and frequency ω = 2π/T .

Tube Collapse Under Steady Flow

Increasing the external pressure can cause the elastic section to par-
tially collapse, reducing the cross-sectional area. Axial tension will
reduce this collapse, and the viscous pressure drop along the sec-
tion (due to the mean flow) means that the collapse will be more
pronounced in the down-stream half.

These effects lead to interesting coupled fluid–structure problems:
computing the shape of the collapsed tube, and also the resulting
pressure–flux relationships for steady flow. For example: Luo &
Pedley (1995); Hazel & Heil (2003); Marzo et al. (2005)

Forced vs. Free Oscillations

• Primarily interested in the instability, together with the conditions
for it to exist, and an understanding of the mechanisms.

• Consider first periodic oscillations of a flexible wall, and calculate
the induced fluid flow.

• Examine the net energy transfer to (work done on) the wall. If
positive then that particular mode is unstable, and hence we should
expect a similar unstable mode to be able to grow spontaneously
in an unforced situation.

• As well as these implications, such results also provide further
direct validation for numerics, without having to specify any par-
ticular wall elasticity model.
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